Wave Refraction: Total Internal Reflection

Definitions	Equations	Questions
Total Internal Reflection occurs when: Light travels from a medium to a less dense medium (e.g. glass to air) AND the angle of incidence is greater than the critical angle air + bit + bi	$n_{1}\sin\theta_{1} = n_{2}\sin\theta_{2}$ $\frac{\text{Refractive index of medium 1} + n_{1} + \frac{1}{2}}{\text{Angle of ray in medium 2}} + \frac{1}{2} + $	 BEHAVIOUR OF LIGHT (2022;1) (a) Helen uses a semi-circular block and alters the angle that the light hits the straight side, and she observes the following phenomenon: Identify the physics phenomenon occurring at the straight boundary and describe the two conditions required for this phenomenon to occur. Refraction and lenses (2017;2) Sarah places a transparent glass and a transparent plastic rectangular block together and shines a green laser beam, as shown below. Diagram is NOT to scale (b) The refractive index of plastic is determined to be 1.43. Calculate the critical angle for the glass-plastic boundary.
Terms angle of incidence: The angle between the incident ray and the normal line. critical angle: Smallest angle of incidence at which a light ray passing from	<u>Tips</u> For Total Internal Reflection: $\theta_2 = 90^\circ \text{ so } \sin \theta_2 = 1$ $\sin \theta_c = n_2/n_1$	Answers(a) Total internal reflection. More optically dense to less optically dense medium, and incident angle must be greater than critical angle.(b) $n_1 \sin \theta_1 = n_2 \sin \theta_2$
one medium to another less refractive medium can be totally reflected. total internal reflection: Reflection of a ray at the boundary of two media, when the ray comes from greater refractive index. Refraction: Deviation of the path of a wave as it passes across the boundary separating two media.		$1.55 \times \sin \theta_{c} = 1.43 \times \sin 90^{\circ}$ $\sin \theta_{c} = \frac{1.43}{1.55}$ $\theta_{c} = 67.7^{\circ} \iff 67.3^{\circ} \text{ (depending on rounding)}$